
A frontal Delaunay quad mesh generator using
the L∞ norm

J.-F. Remacle2, F. Henrotte2, T. Carrier Baudouin2, C. Geuzaine1, E.
Béchet3, Thibaud Mouton3, and E. Marchandise2

1 Université de Liège, Department of Electrical Engineering and Computer
Science, Montefiore Institute B28, Grande Traverse 10, 4000 Liège, Belgium
cgeuzaine@ulg.ac.be

2 Institute of Mechanics, Materials and Civil Engineering, Universit catholique de
Louvain, Avenue Georges-Lematre 4, 1348 Louvain-la-Neuve, Belgium
{jean-francois.remacle,emilie.marchandise,
tristan.carrier,francois.henrotte}@uclouvain.be

3 Université de Liège, Aerospace and Mechanical Engineering Department,
Chemin des Chevreuils, 1, 4000 Liège, Belgium
{eric.bechet, thibaud.mouton}@ulg.ac.be

Summary. A new indirect way of producing all-quad meshes is presented. The
method takes advantage of a well known algorithm of the graph theory, namely the
Blossom algorithm that computes the minimum cost perfect matching in a graph in
polynomial time. Then, the triangulation itself is taylored with the aim of producing
right triangles in the domain. This is done using the infinity norm to compute dis-
tances in the meshing process. The alignement of the triangles is controlled by a cross
field that is defined on the domain. Meshes constructed this way have their points
aligned with the cross field direction and their triangles are almost right everywhere.
Then, recombination with our Blossom-based approach yields quadrilateral meshes
of excellent quality.

Key words: Quadrilateral mesh generation, graph theory, infinity norm

1 Introduction

This paper describes a new methodology for generating meshes with quadri-
lateral elements (quad meshes). There exist so far essentially two approaches
to generate automatically such meshes. With direct methods, quadrilaterals
are constructed at once, using either advancing front techniques [1] or regular
grid-based methods (quadtrees) [2]. Indirect methods, on the other hand, rely
on an initial triangular mesh and apply merging techniques to recombine the
triangles of the initial mesh into quadrangles [3, 4]. Other more sophisticated
indirect methods use a mix of advancing front and recombination [5].



2 J.-F. Remacle et al.

In order to motivate our work, let us first explain why standard indirect
quadrilateralization methods fail to produce optimal quad meshes. Figure 1-
(a) shows a uniform triangular mesh in R2 with equilateral elements; all ele-
ments and all edges are of size a. This mesh can be deemed perfect in the sense
that optimality criteria, both in size and shape, are fulfilled. In this case, the
Voronoi cell of each vertex x is an hexagon of area a2

√
3/2, and the number

of points per unit of surface is 2/(a2
√

3). Comparing with a uniform mesh
made of right triangles of size a, Figure 1-(b), one sees that the Voronoi cells
are now squares of area a2. Filling R2 with equilateral triangles requires thus
2/
√

3 times more vertices (i.e. about 15% more) than filling the same space
with right triangles. So, although quad meshes can be obtained by recombi-
nation of any triangular meshes, conventional triangular meshes are not the
most appropriate starting point because they are essentially made of (nearly)
equilateral triangles and contain therefore about 15% too many vertices. The
purpose of this paper is to introduce a method to generate triangular meshes
suited for recombination into well-behaved quad meshes.

x1

a

xx2

y4

a

y1 y2

y y3

(a) (b)

Fig. 1. Voronoi cells of one vertex that belongs either to mesh of a equilateral
triangles (a) or of right triangles (b).

The mesh in Figure 1-(b) contains edges of different sizes. For example,
‖y − y2‖2 = a

√
2 whereas ‖y − y1‖2 = a. This mesh contains long edges at

45 degrees and short edges aligned with the axis. This explains why mesh (b)
contains less points than mesh (a). Yet, long edges will be eliminated by the
recombination procedure and the final mesh will be made of quadrilaterals
with all edges of size a.

In devising a procedure to generate triangular meshes well-suited for re-
combination into quadrangles, one should recognize that the optimal size of



A frontal Delaunay quad mesh generator using the L∞ norm 3

an edge to be inserted at a point by the Delaunay algorithm depends on its
orientation. A first possibility would be to encapsulate this directional infor-
mation into some kind of anisotropic L2 metric. This is however not possible
as such a metric M would have to ensure that (See Figure 1-(b))

(y1 − y2)TM(y1 − y2) = (y3 − y2)TM(y3 − y2)

= (y3 − y4)TM(y3 − y4)

= (y − y2)TM(y − y2),

which is clearly impossible. This suffices to conclude that standard metric-
based triangulation algorithms are unable to produce meshes made exclusively
of right triangles.

The approach proposed in this paper is based on the following observation.
If distances between points are measured in the L∞-norm, the triangular
elements of Figure 1-(a) are no longer equilateral : ‖x − x2‖∞ = a and ‖x −
x1‖∞ = a

√
3/2. On the other hand, the elements of Figure 1-(b), which are

right triangles in the L2 norm, are equilateral in the L∞-norm : ‖y−y1‖∞ =
‖y − y2‖∞ = a.

On this basis, the frontal Delaunay algorithm can be adapted to work in
the L∞-norm so as to produce triangular meshes with the right number of
nodes and triangles suitably shaped for producing high quality quadrilaterals
after recombination.

The paper is divided in three parts. In the first part, we make use of a
famous algorithm of the theory of graphs: the Blossom algorithm, proposed by
Edmonds in 1965 [6, 7], which allows to find the minimal cost perfect matching
of a given graph. While classical triangle merge procedures [3, 4] are based on
some kind of heuristics that allow to find which pairs of triangles forming good
quadrangles after recombination, the new method has some clear advantages:
(i) it provides a mesh that is guaranteed to be quadrilateral only, (ii) it is
optimal in a certain way and (iii) it is fast.

Then, a method to build the so-called “cross fields” [8] is presented. The
cross fields represent at each point of the domain the preferred orientations
of the quadrilateral mesh. In the finite element community, it is usually ap-
preciated that quadrilateral elements have orientations parallel to the domain
boundaries.

Finally, the mesh generation procedure is described in detail. A frontal
Delaunay approach inspired by [9] is proposed for determining the successive
position of new points. Frontal meshers usually insert a point in the mesh so
as to form an equilateral triangle (in L2-norm). Here, we also aim at generat-
ing an equilateral triangle, yet in the sense of the local L∞-norm aligned with
the cross field. Meshes constructed this way have their points aligned with the
cross field direction and their triangles are almost right everywhere. Then, re-
combination with our Blossom-quad approach [10] yields quadrilateral meshes
of excellent quality.



4 J.-F. Remacle et al.

In all meshes that are presented as results, the quality of the quadrangu-
lar meshes are evaluated by computing the quality η of every quadrangle as
follows:

η = max

(
1− 2

π
max
k

(∣∣∣π
2
− αk

∣∣∣), 0), (1)

where αk, k = 1, .., 4 are the four angles of the quadrilateral. This quality
measure is η = 1 if the element is a perfect quadrilateral and is η = 0 if one
of those angles is either ≤ 0 or ≥ π. The average quality of elements is noted
η̄ and the worst element quality is noted ηw.

2 Triangle merging using the Blossom algorithm

The idea of the Blossom algorithms is to build a specific weighted graph
G(V,E, c) from the triangle adjacencies in a given mesh T0. Fig. 2 shows a
simple triangular mesh with its graph G. Here, V is the set of graph vertices,
E the set of graph edges and c(E) an graph-edge-based cost function. As can
be seen every vertex of the graph is a triangle ti of the mesh and every edge
of the graph is an internal edge eij of the mesh that connects two neighboring
triangles ti and tj . We aim at finding a subset of edges that forms a perfect
matching, i.e. that makes pairs of triangles, leaving no triangle alone.

2.1 Blossom: a minimum cost perfect matching algorithm

Let us consider G(V,E, c) now such an undirected weighted graph. A matching
is a subset E′ ⊆ E such that each node of V has at most one incident edge
in E′. A matching is said to be perfect if each node of V has exactly one
incident edge in E′. As a consequence, a perfect matching contains exactly
|E′| = |V |/2 edges. This means that a perfect matching can only be found for
graphs with an even number of vertices. A matching is optimum if c(E′) is
minimum among all possible perfect matchings.

In 1965, Edmonds [11, 6] invented the Blossom algorithm that solves the
problem of optimum perfect matching in polynomial time. A straightforward
implementation of Edmonds’s algorithm requires O(|V |2|E|) operations. Since
then, the worst-case complexity of the Blossom algorithm has been steadily
improving. Both Lawler [12] and Gabow [13] achieved a running time of
O(|V |3), Galil, Micali and Gabow [14] improved it to O(|V ||E| log(|V |)). The
current best known result in terms of |V | and |E| is O(|V |(|E|+log |V |)) [15].

There is also a long history of computer implementations of the Blossom
algorithm, starting with the Blossom I code of Edmonds, Johnson and Lock-
hart [7]. In this paper, our implementation makes use of the Blossom IV code
of Cook and Rohe [16]4 that has been considered for several years as the
fastest available implementation of the Blossom algorithm.

4 Computer code available at http://www2.isye.gatech.edu/ wcook/blossom4.



A frontal Delaunay quad mesh generator using the L∞ norm 5

eij

ti

tj

Fig. 2. A mesh (in black) and its graph (in cyan and red). The cyan points are the
V graph vertices, the cyan and red lines the set of graph edges E and the subset of
red edges forms a perfect matching.

2.2 Optimal triangle merging

In term of what has just been defined, the subset E′ of edges that have been
used for triangle merging in the approach of [4] is a matching that is very
rarely a perfect matching. The one of [3] is usually a perfect matching, but
not necessarily the optimal one.

Here, we propose a new indirect approach to quadrilateral meshing that
takes advantage of the Blossom algorithm of Edmonds. To this end we apply
the Blossom IV algorithm to the graph of the mesh. We intend to find the
optimum perfect matching with respect to the following total cost function

c =
∑
e∈E′

(1− η(qij)), (2)

that is, the sum of all elementary cost functions (or “badnesses”) qij of the
quadrilaterals that result in the merging of the edges of the perfect matching
E′. Such a cost function can be related to any mesh quality measure [17].

An obvious requirement for the final mesh to be quadrilateral only is that
the initial triangular mesh contains an even number of triangles (i.e., an even
number of graph vertices). Euler’s formula for planar triangulations states



6 J.-F. Remacle et al.

that the number of triangles in the mesh is

nt = 2(nv − 1)− nbv, (3)

where nbv is the number of mesh nodes on its boundary. So, the number of
mesh points on the boundary nbv should be even.

If for some graphs it is possible to find different perfect matchings, there is
in general no guarantee that even one single perfect matching exists in a given
graph. The general problem of counting the number of perfect matchings in
a general graph is #P-complete5. In other words, there is no hope to find the
number of perfect matchings in a general graph (however, there is a way to
find out, in polynomial time, wether a perfect matching exists by detecting a
breakdown in the Blossom algorithm). More details about Blossom, matchings
and graphs can be found in [10], where we describe a way to ensure that the
graph of the mesh always has a perfect matching.

Fig. 3. Mesh of the Piston created from a combination of triangle using the Blossom-
quad algorithm.

Fig. 3 shows an example of the use of the Blossom algorithm for recombin-
ing the triangles together with the optimization procedure that is described
in [10]. The mesh is composed of 39, 386 quadrilateral elements that are of
average quality η̄ = 0.78, which is good but not great. It is indeed clear that

5 Sharp p-complete, i.e. much harder than NP-complete.



A frontal Delaunay quad mesh generator using the L∞ norm 7

elements have no preferred orientation. The mesh is composed of patches of
quadrilaterals that have random orientations. In the next section we will de-
velop a new method for inserting points in the domain in a way such that
Blossom will be able to provide an optimal quad-mesh that is oriented cor-
rectly.

3 Cross fields

In what follows, we consider that we have a first triangulation of a surface T0
in R3 and that we have build a parametrization x(u) that maps every point of
the 3D surface mesh to a point in a parametric space in R2. The parametrized
surface mesh is denotes T ′

0 . Moreover, we are able to compute the derivatives
of the mapping in order to build the mesh metric :

M = xT,ux,u =

[
x,u · x,u x,u · x,v
x,v · x,u x,v · x,v

]
. (4)

A cross field θ(u) is supposed to give enough information to orient a local
system of axis at each point u in the parameter plane. The edges of the
quadrilaterals generated around u should then be aligned with the cross field.
Figure 4 shows an annular domain, the cross field and the resulting quad mesh.
The computer graphics community has already been confronted to the issue

ycross

x

y

xcross
θ

Fig. 4. Mesh of annular domain and a zoom on the cross field.

of computing “cross fields” in the context of (global) surface parametrization
[18, 19]. Cross fields can be based on principal directions of curvature of the
surface [8].

Here, we consider an ad hoc approach based on the following criteria:



8 J.-F. Remacle et al.

• The cross field should be computed automatically;
• Mesh directions should be parallel to the boundaries of the domain at the

vicinity of those boundaries;
• The cross field should be smooth.

In order to fulfill those constraints, we have chosen to compute θ using a
boundary value problem. The value of θ is fixed at the boundary of the domain
and is propagated inside the domain using an elliptic PDE.

The angular oriention of a cross being defined up to the multiples of π/2,
it cannot be represented univocally by the orientation of one branch of the
cross. The complex valued function

α(u) = a(u) + ib(u) = e4iθ(u)

however offers an univocal representation, as it takes one same value for the
directions of the 4 branches of a local cross.

A first triangular mesh T0 is generated using any available algorithm. If a
parametrization of the surface needs to be computed, then we use the same
mesh as the one that has been used for computing the parametrization. Two
Laplace equations with Dirichlet boundary conditions are then solved for each
surface of the mesh in order to compute the real part a(u) = cos 4θ and the
imaginary part b(u) = sin 4θ of α:

∇2a = 0, ∇2b = 0 on T ′
0 ,

a = cos (4θb), b = sin (4θb) on ∂T ′
0 , (5)

where θb is the angle between the normal to the boundary and the coordinate
axis. Then, we have to supply the boundary conditions ā(u) and b̄(u) ensuring
that θ is aligned with ∂S ′. After solving, the cross field is represented by

θ(u) =
1

4
atan2(b(u), a(u)),

where atan2(b, a) is the 4-quadrant inverse tangent.

4 Triangulation in the L∞-norm

In this section, standard geometrical notions usually defined in the L2-norm
are extended in the L∞ norm.

4.1 Distances and norms

In the R2 plane, the distance between two points x1(x1, y1) and x2(x2, y2)
is usually based on the Euclidean norm (L2-norm). Other distances can be
defined however, based on other norms:



A frontal Delaunay quad mesh generator using the L∞ norm 9

L1

y

x

L∞

L2

Fig. 5. Illustration of the unit circle in different norms ‖x‖p

• The L1-norm distance ‖x2 − x1‖1 = |x2 − x1|+ |y2 − y1|,
• The L2-norm distance ‖x2 − x1‖2 = (|x2 − x1|2 + |y2 − y1|2)1/2,

• The Lp-norm distance ‖x2 − x1‖p = (|x2 − x1|p + |y2 − y1|p)
1/p

,
• The L∞-norm distance ‖x2−x1‖∞ = limp→∞‖x2−x1‖p = max (|x2 − x1|, |y2 − y1|).

Figure 5 shows the unit circle in different norms. One important thing to
remark is that only the L2-norm is rotation invariant. The L∞-norm depends
this on the local orientation of the coordinate axes.

In order to simplify the notations, we consider in what follows that (x, y)
are the local coordinates aligned with the cross field (xcross, ycross) (see for
example the cross field in Fig. 4).

4.2 Bisectors in the L∞-norm

The perpendicular bisector, or bisector of the segment delimited by the points
x1 = (−xp,−yp) and x2 = (xp, yp) is by definition the set of points x =
(x, y) equidistant to x1 and x2. In the L2-norm, it is the union of all 2 by
2 intersections of circles centered at x1 and x2 and having the same radius.
Those intersections are each times two points and their union form a straigth
line. In the L∞-norm, the circles have the geometric appearance of squares
and their intersections 2 by 2 are either 2 points or a segment. The bisector is
then a broken line (see Fig. 6) in general but it can also form a diabolo-shaped
region whenever the considered segment is aligned with an axis (x1 = x2 or
y1 = y2).

It is assumed, without loss of generality, that xp ≥ yp. The bisector of the
segment in the L∞-norm is the set

L = {x = (x, y),max (|x− xp|, |y − yp|) = max (|x+ xp|, |y + yp|)}.

The vertical segment of Figure 6 that passes through the origin (0, 0) is the
intersection of the L∞-circles of L∞-radius xp centered at x1 and x2. It belongs



10 J.-F. Remacle et al.

L ≡ y + (yo − xp) = x

x

y

x2 = (xp, yp)

(0, 0)

α < π
4

(0, xp − yp)

x3 = (−xp, 2xp − yp)

x1 = (−xp,−yp)

Fig. 6. Bisector of two points x1 = (−xp,−yp) and x2 = (xp, yp) using the L∞-
norm. The dottes squares are the L∞ circles.

thus to the bisector. Increasing now the radius progressively, the intersection
of the two L∞-circles is a pair of points forming two half lines oriented at
3π/4 and starting at (0, xp− yp) and (0,−xp + yp) respectively. The equation
of the bisector L is then:

L ≡ y + (yp − xp) = x (6)

There exists an ambiguity when yp = 0. In this case, the bisector contains
2D regions of the plane. It is assumed in what follows that points are in general
position, i.e. that there does not exist two points that share either the same
x or y coordinate.

4.3 The equilateral triangle using the L∞-norm

A triangle T (x1, x2, x3) is equilateral in the L∞-norm if

‖x2 − x1‖∞ = ‖x3 − x1‖∞ = ‖x3 − x2‖∞.

It is possible to build such a triangle starting from Figure 6. We take again
x1 = (−xp,−yp) and x2 = (xp, yp) and look for a point on the bisector of
x1x2 located at a distance 2xp from the endpoints of the segment. This point
is x3 = (−xp, 2xp − yp).



A frontal Delaunay quad mesh generator using the L∞ norm 11

4.4 Circumcenter, circumradius and circumsquare in the L∞-norm

Consider a triangle Ti(x1, x2, x3). Its circumcenter xc = (xc, yc) in the L∞-
norm verifies

‖x1 − xc‖∞ = ‖x2 − xc‖∞ = ‖x3 − xc‖∞.

ycross

x3

xcross

Ti

xc θ

R(T, θ)

x1

x2

Fig. 7. Circumcenter xc and circumradius R∞(T, θ) of a triangle Ti using the L∞-
norm. The circumsquare is the red dotted square.

The L∞-circumcenter of the triangle is located at the intersection of the
L∞-perpendicular bisectors.

The circumcircle in the L∞-norm (also called circumsquare), is the small-
est square centered at the circumcenter that encloses the triangle, Figure 7.
The circumradius R∞(T, θ) is the distance in the L∞-norm between the cir-
cumcenter and anyone of the three vertices. It is given by:

R∞(T, θ) =
1

2
max ((max(x1, x2, x3)−min(x1, x2, x3), (max(y1, y2, y3)−min(y1, y2, y3)) .

(7)

One interesting fact is that the computation of circumcenters and circum-
radii in the L∞-norm is a very stable numerical operation.

5 A frontal-Delaunay mesher in the L∞-norm

Let us recall briefly the pros and cons of the two main approaches for mesh
generation. Advancing front techniques start from the discretization of the



12 J.-F. Remacle et al.

boundary (edges in 2D). The set of edges of the boundary discretization is
called the front. A particular edge of this front is selected and a new triangle
is formed with this edge as its base and the front is updated accordingly.
The algorithm advances in the domain until theL∞ front is emptied and the
domain fully covered by triangles. The main advantage of advancing front
techniques is that they generate points and triangles at the same time, which
makes it possible to build optimum triangles, e.g. equilateral triangles in our
case. The main drawback of the method is that parts of the front advance
independently, leading to possible clashes when they meet.

Delaunay-based mesh generation techniques are more robust because a
valid mesh exists at each stage of the mesh generation process. Yet, inserting
a point using the Delaunay kernel [20] requires the creation and the deletion
of a number of triangles, so that there is less control on the element shapes
than in the case of advancing front techniques.

The frontal Delaunay approach makes the best of both techniques. As it
is based on a Delaunay kernel, a valid mesh is maintained at each stage of
the process. Yet, some kind of front is defined in the triangulation and points
are inserted in a frontal manner. The process stops when every element of the
mesh has the right size according to the size field δ(x).

The ideas of the new frontal-quad algorithm are inspired by the frontal
Delaunay approach of [9].

In what follows, we consider parametric surfaces that have a conformal
parametrization i.e parametrization that conserv angles. Withing this per-
spective, isotropic meshes on the parameter plane result in isotropic meshes
in the 3D space. This hypothesis of conformality may seem over restrictive: for
example, the usual parametrization of a spherical surface using spherical co-
ordinates is not conformal. Nevertheless, in this paper, we use reparametriza-
tion techniques that allow to build conformal mappings [19, 21]. Moreover, the
technique that is presented here can be extended to anisotropic quadrilateral
mesh generation.

Consider a surface mesh T0 for which me have computed a discrete con-
formal parametrization u(x) (the parametrized mesh is T ′

0 ) and a given mesh
size field δ(x). Consider also that we have computed on T ′

0 a cross field θ(u)
from (5). An new delquad mesh T ′

1 is constructed in the parameter plane that
contains the parametrized points of the boundary edges of T0. Let us define
an adimensional L∞-meshsize

hi =
R∞(Ti, θ(u))

δ(x(u))|detM(u)|1/4
=
R∞(Ti, θ(u))

δ′(u)

for each triangle Ti of T0. Quantities θ(u), M(u) and the size function δ(x(u))
are evaluated at the usual (L2)-centroid of the triangle. Triangles are then
classified into three categories

1. A triangle is resolved if hi ≤ hmax;
2. A triangle is active if hi > hmax and, either one of its three neighbors is

resolved or one of its sides is on the boundary of the domain;



A frontal Delaunay quad mesh generator using the L∞ norm 13

3. A triangle is waiting if it is neither resolved nor active.

We choose hmax = 4/3. This choice is standard in the domain of mesh gener-
ation [22]. Figure 8 is an illustration of the way triangles are classified in the
algorithm. The front is defined as the set of active triangles. Active triangles

Fig. 8. Illustration of the frontal algorithm with resolved (grey), active (red) and
waiting (white) triangles.

are sorted with respect to hi. Front edges are therefore defined as those edges
separating active and resolved triangles.

The frontal algorithm inserts a new point so as to form an optimal triangle
with the edge corresponding to the largest active triangle. Consider the edge
x2x3 in Figure 9 and assume it corresponds to the largest active triangle of
the mesh (the red triangle on Figure 9). For the discussion, the coordinate
system has been centered at the mid-edge point xm = 1

2 (x2 +x3) and aligned
with the local cross field, this can be achieved by a translation and a rotation
of angle θ(xm).

We choose to position of the new point xn along the L∞-perpendicular
bisector L of x2x3. The exact position of the new point xn will be chosen in
order to fullfill the size criterion δ(xm).

In order to create a new triangle Ti(x2,x3,xn) of size R∞(Ti, θ) = δ′(xm),
we position xn at the intersection of L with the square Cn of side δ′(xm)
passing through points x2 and x3 (see Figure 9).

The following considerations should be made.

• The new point should not be beyond xc, the center of the circumsquare
of the active triangle (see Figure 9) as this would create a triangle with



14 J.-F. Remacle et al.

Active

Edge of the front

Resolved

x1

Cn

Cl

L

x3 = (−xp, yp)

x2 = (xp,−yp)

x4

xc

xm

xl

xn

xe

x

y

Fig. 9. Illustration of the point insertion algorithm.

a small edge xnx4. Note that this limit case corresponds to a classical
point insertion scheme where new points are inserted at the center of the
circumcircle of the worst triangle, yet in the L∞-norm in this case.

• The new point should not be placed below xl where xl is the intersection
of the ∞-perpendicular bisector of x2x3 and the circumsquare Cl of the
resolved triangle (x1,x2,x3). Inserting a point into Cl would make the
resolved triangle invalid by means of the Delaunay criterion.

• If δ′(xm) = ‖x3 − x2‖∞, then the optimal point is xn = xe. It correspond
to the largest triangle Ti(xe,x2,x3) that verifies R∞(Ti, θ) = δ′(xm).

The position of the optimal point is computed as follow:

xn = xe + t(xc − xe) (8)

with

t = min

(
max

(
1,

‖x3 − x2‖∞ − δ′(xm)

‖x3 − x2‖∞ − ‖xc − x2‖∞

)
,−‖xl − xe‖2
‖xc − xe‖2

)
, (9)

and xc,xe and xl are computed from the equation of the bisector L (6) :

xc =

(
1

2
(x4 − xp),

1

2
(x4 + xp)− yp

)
,



A frontal Delaunay quad mesh generator using the L∞ norm 15

xe = (δ′(xm)− xp + yp, δ
′(xm)) and xl = (δ′(xm), δ′(xm) + xp − yp) .

Another important ingredient of the advancing front strategy is the fact
that the fronts should be updated layer by layer. A initial front is created with
the edges of the 1D discretization. The algorithm inserts points until every
edge of the active front have been treated. Then other fronts are created and
emptied until no active triangle is left in the mesh.

6 Examples

6.1 Piston

As a first example, let us apply the new algorithm to the geometry of the same
piston of Figure 3. The result of the advancing front delaunay quad mesher
is shown in Figure 10. The new mesh is close to be perfect. The quadrilateral
mesh has been automatically generated with the new algorithm, the only
control parameter being a constant mesh size field. The mesh is composed of
31, 979 quads and has been generated in about 15 seconds. Compared with
the 39, 386 quads of the mesh shown in Figure 3, this mesh has about 19%
less nodes. This number is close to the theoretical value 1−

√
3/2 = 0.134.

The average element quality is now η̄ = 0.93 and the worst element is
of quality 0.39, which can be considered as very good. Moreover, 92% of the
nodes have 4 adjacent quadrangles, which is also very good.

6.2 Falcon aircraft

As a second example, let us consider the Falcon aircraft of Figure 11. The
mesh size field is composed of a uniform bulk size field δb = 0.1 and of line
and point sources positioned at strategic zones of the aircraft.

The resulting mesh is presented on Figure 11. The mesh is composed of
53, 297 quadrangles. The total time for the surface meshing was 22 seconds.
The average and worst quality of the mesh are η̄ = 0.86 and ηw = 0.17 which
can be considered as excellent.

7 Conclusion

A new method for automatic quad-meshing of surfaces has been proposed.
The new algorithm uses distances in the L∞ norm as a base for the insertion
of new points in the mesh and the generation of edges of the right size in this
specific norm.

Perspectives of this approach are numerous. The automatic generation of
hex-dominant meshes remains a challenge in the community of finite elements
in general. The extension of the new Delquad approach to a Delhex algorithm



16 J.-F. Remacle et al.

Fig. 10. Mesh of the Piston computed with the presented frontal delquad mesh
algorithm.

that would generate 3D tetrahedral meshes that have the right number of
points and the right orientation to be recombined optimally into hexaedra is
a natural sequel to this work.

Acknowledgements

This work has been partially supported by the Belgian Walloon Region under
WIST grants ONELAB 1017086 and DOMHEX 1017074.

References

1. T. D. Blacker and M. B. Stephenson. Paving: A new approach to automated
quadrilateral mesh generation. International Journal for Numerical Methods in
Engineering, 32:811–847, 1991.

2. P.J. Frey and L. Marechal. Fast adaptive quadtree mesh generation. In in:
Proceedings of the Seventh International Meshing Roundtable. Citeseer, 1998.

3. C. K. Lee and S. H. Lo. A new scheme for the generation of a graded quadri-
lateral mesh. Computers and Structures, 52:847–857, 1994.

4. H. Borouchaki and P.J. Frey. Adaptive triangular–quadrilateral mesh genera-
tion. International Journal for Numerical Methods in Engineering, 45(5):915–
934, 1998.



A frontal Delaunay quad mesh generator using the L∞ norm 17

Fig. 11. Final quadrilateral surface mesh of the Falcon aircraft.

5. S. J. Owen, M. L. Staten, S. A. Canann, and S. Saigal. Q-morph: An indirect
approach to advancing front quad meshing. International Journal for Numerical
Methods in Engineering, 9:1317–1340, 1999.

6. J. Edmonds. Maximum matching and a polyhedron with 0-1 vertices. J. of
Research at the National Bureau of Standards, 69B(125–130), 1965.

7. J. Edmonds, E. L. Johnson, and S. C. Lockhart. Blossom I: A computer code
for the matching problem. IBM T. J. Watson J. Edmonds, E. L. Johnson, and
S. C. Lockhart. IBM T. IBM T.J. Watson Research Center, Yorktown Heights,
New York, 1969.

8. B. Lévy and Y. Liu. Lp centroidal voronoi tesselation and its applications. In
ACM Transactions on Graphics (SIGGRAPH conference proceedings), 2010.

9. S. Rebay. Efficient unstructured mesh generation by means of delaunay tri-
angulation and bowyer-watson algorithm. Journal of Computational Physics,
106(1):125–138, 1993.

10. J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, and
C. Geuzaine. Blossom-quad: a non-uniform quadrilateral mesh generator using a



18 J.-F. Remacle et al.

minimum cost perfect matching algorithm. International Journal for Numerical
Methods in Engineering, 2011. submitted.

11. J Edmonds. Paths, trees, and flowers. Canad. J. Math, 17:449–467, 1965.
12. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-

hart, and Winston, New York, NY, 1976.
13. H. Gabow. Implementation of Algorithms for Maximum Matching on Nonbi-

partite Graphs. PhD thesis, Stanford University, 1973.
14. H. Gabow, Z. Galil, and S. Micali. An o(ev log v) algorithm for finding a maximal

weighted matching in general graphs. SIAM J. Computing,, 15(120–130), 1986.
15. H. N. Gabow. Data structures for weighted matching and nearest common

ancestors with linking. In 434-443, editor, In Proceedings of the 1st Annual
ACM-SIAM Symposium on Discrete Algorithms,, 1990.

16. W. Cook and A. Rohe. Computing minimum-weight perfect matchings. IN-
FORMS Journal on Computing,, 11(2)(138–148), 1999.

17. P. P. Pébay. Planar quadrangle quality measures. Engineering with Computers,
20(2):157–173, 2004.

18. D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangulation. In
SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pages 1–10, New York, NY,
USA, 2009. ACM.

19. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–
371, 2002.

20. D. F. Watson. Computing the n-dimensional delaunay tessellation with appli-
cation to voronoi polytopes. The Computer Journal, 24(2):167–172, 1981.

21. E. Marchandise, C.C. de Wiart, WG Vos, C. Geuzaine, and J.F. Remacle. High-
quality surface remeshing using harmonic maps–part ii: Surfaces with high genus
and of large aspect ratio. International Journal for Numerical Methods in En-
gineering, 86:1303–1321, 2011.

22. P.J. Frey and P.-L. George. Mesh Generation - Application To Finite Elements.
Wiley, 2008.


